

Addition Reaction of Halogens to Vinyl(pentafluorocyclopropanes): Competition between a Radical Addition and an Electrophilic Addition†

Zhen-Yu Yang*

DuPont Central Research and Development, Experimental Station, P.O. Box 80328, Wilmington, Delaware 19880-0328

zhenyu.yang-1@usa.dupont.com

Received March 31, 2003

Abstract: Vinylpentafluorocyclopropanes 1 react with I₂ to give the (Z) -1,5-adduct **2**, whereas **1** reacts with Cl_2 , Br_2 or ^I-Cl to produce (*Z*)-1,5-adduct **³** predominantly along with small amounts of 1,2-adduct **4**, which are formed by a radical mechanism and an ionic mechanism, respectively.

Halogenations of vinylcyclopropanes give 1,2-adducts predominantly through an electrophilic mechanism due to powerful stabilization of a carbocation by an adjacent cyclopropyl group.¹ Radical additions to vinylcyclopropane produces the 1,5-adduct along with small amounts of 1,2-adducts, particularly in a low concentration of a radical trap agent.² Introduction of fluorine into cyclopropane alters its properties due to an increase of ring strain energy and electron negativity.3 The ring-opening of the difluorocyclopropylcarbinyl radical to a homoallyl radical is considered to be a hyperfast reaction with an estimated activation energy of 1.9 kcal/mol.⁴ However, ring-opening of the difluoro cation analogue is much slower than its hydrocarbon counterpart since destabilization of the cation by difluorination essentially eliminates the cyclopropyl effect.⁵ I previously discovered that a rapid radical polymerization of vinyl(pentafluorocyclopropane) **1** gave the ring-opened polymer exclusively.6 It would be interesting to investigate reaction of vinylpentafluorocyclopropanes with halogens. The radical addition should give 1,5-adducts, whereas ionic addition may be diminished by pentafluorination of the cyclopropyl group. Herein I report the addition of halogens to **1** to test the two competitive mechanisms.

Vinylpentafluorocyclopropanes **1** underwent halogenation reactions under very mild conditions (0 °C to room temperature), whereas addition of halogens to perfluorocyclopropanes required much higher temperatures, usually above 150 °C .⁷ The ring-opened 1,5-addition product and simple 1,2-addition product were obtained, depending on the halogens used and the reaction conditions. Addition of iodine to alkenes is well documented and an ionic addition mechanism is often proposed on the basis of kinetic data and product analysis.⁸ However, iodination of fluoroolefins is considered to proceed through a radical mechanism.9 When **1a** was treated with iodine in CH_2Cl_2 at room temperature to 40 °C, a rapid ringopening addition reaction occurred to give **2a** in 92% yield. GC analysis gave only one peak, and 1H NMR analysis revealed a doublet of triplets at 5.97 ppm with coupling constants of 30.1 and 9.0 Hz. The larger coupling is due to trans F-H coupling, indicative of the (*Z*)-olefin. Compound 1b $(E:Z = 5:1)$ also gave 2b in 89% yield under similar conditions. The exclusive formation of ring-opened products **2** is consistent with the attack of the terminal carbon of the double bond by an iodine atom to give the pentafluorocyclocarbinyl radical, which isomerizes to the (*Z*)-allyl radical through a favorable transition state.6 This kind of cyclopropylcarbinyl radical ring-opening is well-known in hydrocarbons with an activation energy of only 5.5 kcal/mol and a rate constant at 25 °C of almost 1×10^8 s⁻¹.¹⁰ Fluorine substituents on the cyclopropylcarbinyl radical further enhances the rate.4 Although the exact kinetic data has not been measured, the ring opening of the pentafluorocyclopropylcarbinyl radical is believed to be faster than that of the hydrocarbon and difluorinated analogues since the perfluorinated cyclopropane has much higher strain energy. Thus, the ringopened products **2** were formed exclusively.

An ionic addition proceeds predominately in solution upon addition of bromine or chlorine to an electron-rich double bond.2 However, a radical mechanism is operative with an electron-poor double bond, particularly in fluorinated olefins.¹¹ When **1** was treated with Br_2 or Cl_2 in solution, the major products were the ring-opened adducts, **3**, along with the simple addition products, **4**. In contrast to **1**, bromination or chlorination of vinyl cyclo-

[†] Publication No. 8391.

^{(1) (}a) Slobodin, Y. M.; Egenburg, I. Z. Zh. Org. Khim, **1952**, *5*, 1315. (b) Garratt, D. G.; Modro, A.; Oyama, K.; Schmid, G. H.; Tidwell, T. T.; Yates, K. *J. Am. Chem. Soc*. **1974**, *96*, 5295. (c) Majerski, Z.; Schleyer, P. R. *J. Am. Chem. Soc*. **1971**, *93*, 665. (d) Wiberg, K. B.; Szeimies, G. *J. Am. Chem. Soc*. **1970**, *92*, 571. (e) Olah, G. A.; Westerman, P. W.; Nishimura, J. *J. Am. Chem. Soc*. **1974**, *96*, 3548. (f) Wiberg, K. B.; Shobe, D.; Nelson, G. L. *J. Am. Chem. Soc*. **1993**, *115*, 10645.

⁽²⁾ Shellhamer, D. F.; Mckee, D. B.; Leach, C. T. *J. Org. Chem*. **1976**, *41*, 1972.

^{(3) (}a)Dolbier, W. R., Jr. *Adv. Strain Org. Chem*. **¹⁹⁹³**, *²*, 1-58. (b) Smart, B. E. Fluorocarbons. In *Molecular Structure and Energetics*; Liebman, J., Greenberg, A., Eds.; VCH Publishers: 1986; Vol 3. (c) Dolbier, W. R., Jr. *Acc. Chem. Res*. **1981**, *14*, 195.

^{(4) (}a) Tian, F.; Bartberger, M. D.; Dolbier, W. R., Jr. *J. Org. Chem*. **1999**, *64*, 540.

^{(5) (}a) Tian, F.; Battiste, M. A.; Dolbier, W. R., Jr. *Org. Lett*. **1999**, 193. (b) Battiste, M. A.; Tian, F.; Baker, J. M.; Bautista, O.; Villalobos, J.; Dolbier, W. R. Jr. *J. Fluorine Chem*. **2003**, *119*, 39.

⁽⁶⁾ Yang, Z. Y. *J. Am. Chem. Soc*. **2003***, 125,* 870.

^{10.1021/}jo030112j CCC: \$25.00 © 2003 American Chemical Society
Published on Web 05/24/2003

⁽⁷⁾ Yang, Z. Y.; Krusic, P. J.; Smart, B. E. *J. Am. Chem. Soc*. **1995**, *117*, 5397.

^{(8) (}a) Andrews, L. J.; Keefer, R. M. *J. Am. Chem. Soc*., **1952**, *74*, 458. (b) Cvetanorie, R. J.; Duncan, F. J.; Falconer, W. E.; Sunder, W. A. *J. Am. Chem. Soc*. **1966**, *88*, 1602.

⁽⁹⁾ Haszeldine, R. N.; Leedham, K, *J. Chem. Soc*. **1953**, 1548. (10) Bowry, V. W.; Lusztyk, J.; Ingold, K. U. *J. Am. Chem. Soc*. **1991**, *113*, 5687.

⁽¹¹⁾ Shellhamer, D. F.; Allen, J. L.; Allen, R. D.; Bostic, M. J.; Miller, E. A.; O'Neill, C. M.; Powers, B. J.; Price, E. A.; Probst, J. W.; Heasley,

V. L. *J. Fluorine Chem*. **2000**, *106*, 103.

propanes predominately gave the 1,2-adducts through a cyclopropylcarbinyl cation intermediate.^{1,2} The ratio of **3** to **4** depended on the halogens and reaction conditions. For example, bromination of $1a$ in CH_2Cl_2 at 0 °C to room temperature gave **3a** and **4a** $(X = Br)$ in a 4.4:1 ratio, whereas reaction of **1b** with $Br₂$ under the same conditions yielded a 6.3:1 mixture of **3b** and **4b** in 96% yield. In the presence of pyridine, the ratio changed to 3:1 under similar conditions. With Cl₂, 1a produced a 5:1 mixture of **3a** and **4a** $(X = \text{Cl})$. The relative yield of **4b** $(X = \text{Cl})$ was increased when $1b$ was treated with $Cl₂$.

These results indicated that a radical mechanism dominated when **1** reacted with Br_2 or Cl_2 . The ringopening reaction proceeds through a radical intermediate **A** resulting in the 1,5-adduct, but the simple addition may involve a cationic intermediate. The bromine or chlorine cation first adds to the internal carbon of the double bond to form **B** due to electronic effects. In the presence of pyridine, the amount of ionic halogenation increased. This is due to the fact that pyridine promotes the electrophilic bromination through the formation of a bromine and pyridine complex.¹²

Interhalogens such as $I-Cl$ are highly polarized halogens, although they are in equilibrium with small amounts of the pure halogens in solution.^{2,13} When I-Cl reacted with $1a$ in CH_2Cl_2 at room temperature, a 2:1 mixture of $ICF_2CF=CHCH_2Cl$ and $c-C_3F_5CHICH_2Cl$ was obtained in 92% yield. The amount of the electrophilic adduct **6a** was significantly greater than in reactions with I_2 and Cl_2 . The regiochemistry of the addition reaction also supported an electrophilic mechanism. Other regioisomers such as c -C₃F₅CHClCH₂I were not observed since attack of the iodonium ion to the internal carbon of the double bond is electronically favored by the electron-withdrawing effects of the fluorinated substituent. Upon reaction of **1b** with I-Cl, **6b** was found to be the major product with a ratio of **5b** to **6b** of 1:2.2. This is due, at least in part, to the increase in electronic density of the double bond by a methyl group, which favors the ionic mechanism.

Since alkyl iodides form radical intermediates under UV irradiation, it would be interesting to investigate if the ring opening of the pentafluorocyclopropylcarbinyl radical occurs when **6b** is irradiated with UV light. After a 1:2.2 mixture of **5b** and **6b** was irradiated with UV light in CCl₄ solution at room temperature for 1 h, ¹⁹F NMR revealed that a significant amount of **6b** was converted into **5b** with some decomposition. The ratio of **5b** to **6b** changed from 1:2.2 to 5.9:1. This result further supports that the 1,5-addition proceeds through a radical intermediate.

In summary, unlike nonfluorinated vinyl(cyclopropanes), vinyl(pentafluorocyclopropanes) react with halogens predominantly through a radical mechanism, along with a minor ionic mechanism, due to its electron-poor double bond and high strain energy. The two mechanisms can be readily differentiated by analysis of adducts. The radical addition gives the ring-opened 1,5-adducts, whereas the ionic addition affords the 1,2-adducts. The relative ratio of these two products depends on the halogens and reaction conditions. Iodination of **1** gives the 1,5-adducts exclusively, and bromination and chlorination produce a mixture of the adducts. The resulting adducts are useful intermediates for making other fluorinated materials.

Experimental Section

¹H NMR and ¹⁹F NMR spectra were taken in CDCl₃ solvent using tetramethylsilane (TMS) and trichlorofluoromethane (CFCl3) as respective internal standards. Preparation of **1** was described according to the literature.¹⁴

General Procedure for Reactcion of Vinyl(pentafluorocyclopropanes) 1 with Halogens. A mixture of 5.1 g (20 mmol) of I_2 , 10 mL of CH_2Cl_2 , and 3.4 g (21.5 mmol) of vinylpentafluorocyclopropane was stirred in a sealed tube at 50 °C for 3 h. After removal of solvent, 7.7 g of crude product was distilled to give 7.5 g (92%) of (Z) -ICF₂CF₂CF=CHCH₂I, **2a**, bp ⁸⁵-86 °C/6.5 mmHg. 19F NMR: *^δ* -60.5 (m, 2F), -112.9 (m, 2F), -126.6 (m, 1F). ¹H NMR: δ 5.97 (dt, $J = 30.1$ Hz, $J = 9.0$ Hz, 1H), 3.92 (ddt, $J = 9.0$ Hz, $J = 1.6$ Hz, $J = 1.6$ Hz, 2H). HRMS: calcd for $C_5H_3F_5I_2$, 411.8244; found, 411.8246. Anal. Calcd for C5H3F5I2: C, 14.58; H, 0.73; F, 23.06; I, 61.62. Found: C, 14.50; H, 0.79; F, 21.41; I, 61.34.

Reaction of 1-Pentafluorocyclopropyl Propene 1b with Iodine. (Z)-ICF₂CF₂CF=CHCHICH₃, **2b**, was obtained in 89% yield, bp 68 °C/3 mmHg. ¹⁹F NMR: δ -60.4 (m, 2F), -113.2 (m, 2F), -126.0 (m, 1F). ¹H NMR: δ 5.96 (dd, *J* = 30.3 Hz, *J* = 11.1

^{(12) (}a) Bellucci, G.; Berti, G.; Bianchini, R.; Ingrosso, G.; Ambrosetti; R. *J. Am. Chem. Soc*. **1980**, *102*, 7480. (b) Bellucci, G.; Berti, G.; Bianchini, R.; Ingrosso, G.; Yates, K. *J. Org. Chem*. **1981**, *46*, 2315. (c) Ambrosetti, R.; Bellucci, G.; Bianchini, R. *J. Phys. Chem*. **1986**, *90*, 6261. (d) Sket, B.; Zupan, M. *J. Org. Chem*. **1986**, *51*, 929. (e) Zabicky, J.; Mhasalkar, M.; Oren, I. *Macromolecules* **1990**, *23*, 3755.

⁽¹³⁾ Turner, D. E.; O'Malley, R. F.; Sardella, D. J.; Barinelli, L. S.; Kaul, P*. J. Org. Chem.* **1994**, *59*, 7335.

⁽¹⁴⁾ Smart, B. E.; Krusic, P. J.; Roe, D. C.; Yang, Z. Y. *J. Fluorine Chem*. **2002**, *117*, 199.

Hz, 1H), 5.11 (dq, $J = 11.1$ Hz, $J = 6.8$ Hz, 1H), 2.00 (d, $J = 6.8$ Hz, 3H). HRMS: calcd for $C_6H_5F_5I_2$, 425.8401; found, 425.8381.

Reaction of Vinylpentafluorocyclopropane 1a with Bromine. A mixture of (Z) -BrCF₂CF₂CF=CHCH₂Br and c-C₃F₅-CHBrCH2Br was obtained in a ratio of 4.4:1 in 84% yield, bp 152-154 °C. ¹⁹F NMR for (*Z*)-BrCF₂CF₂CF=CHCH₂Br: δ -65.9 (m, 2F), -115.9 (m, 2F), -126.0 (m, 1F). ¹⁹F NMR for c-C₃F₅-CHBrCH₂Br: δ -144.9 (d, J = 194.1 Hz, 1F), -154.6 (dd, J = 195 Hz, $J = 5.6$ Hz, 1F), -157 (s, 2F), -219 (dt, $J = 10.4$ Hz, J $=$ 4 Hz, 1F). ¹H NMR for (*Z*)-BrCF₂CF₂CF=CHCH₂Br: *δ* 5.94 (dt, $J = 30$ Hz, $J = 8.5$ Hz, 1H), 4.04 (ddt, $J = 8.5$ Hz, $J = 1.8$ Hz, $J = 1.5$ Hz, 2H). ¹H NMR for c-C₃F₅CHBrCH₂Br: 4.40 to 4.24 (m, 1H), 3.83 (d, $J = 10.4$ Hz) and 3.82 (d, $J = 6.3$ Hz) total 2H. GC-HRMS: calcd for $BrCF_2CF=CHCH_2Br$, 315.8523; found, 315.8522. GC-HRMS: calcd for c -C₃F₅CHBrCH₂Br - Br, 236.9337; found, 236.9295. Anal. Calcd for $C_5H_3F_5Br_2$: C, 18.89; H, 0.95; F, 29.88; Br, 50.27. Found: C, 18.75; H, 0.93; F, 28.70; Br, 50.48.

Reaction of 1-Pentafluorocyclopropylpropene 1b with Bromine. (Z)-BrCF₂CF₂CF=CHCHBrCH₃ and c-C₃F₅CHBr-CHBrCH₃ were obtained in a $6.3:1$ ratio in 96% yield, bp $81-85$ [°]C/50 mmHg. ¹⁹F NMR for (*Z*)-BrCF₂CF₂CF=CHCHBrCH₃: δ -65.9 (m, 2F), -116.1 (m, 2F), -126.2 (m, 1F). ¹⁹F NMR for c-C₃F₅CHBrCHBrCH₃: δ −145.1 (dd, *J* = 195.5 Hz, *J* = 4.5 Hz, 1F), -155.0 (dm, $J = 195$ Hz, 1F), -156.6 (d, $J = 199$ Hz, 1F), -157.6 (dm, $J = 199$ Hz, 1F), -216.5 (dt, $J = 26.6$ Hz, $J = 4.3$ Hz, 1F). ¹H NMR for (*Z*)-BrCF₂CF₂CF=CHCHBrCH₃: *δ* 5.89 (dd, $J = 30.2$ Hz, $J = 10.6$ Hz, 1H), 5.00 (dq, $J = 10.6$ Hz, $J =$ 6.8 Hz, 1H), 1.83 (d, $J = 6.8$ Hz, 3H). ¹H NMR for c-C₃F₅-CHBrCHBrCH₃: δ 4.35 (dq, $J = 10.6$ Hz, $J = 6.5$ Hz, 1H), 4.04-4.23 (m, 1H), 1.96 (d, $J = 6.5$ Hz, 3H). HRMS: calcd for $C_6H_5F_5Br_2$, 329.8678; found, 329.8650. Anal. Calcd for $C_6H_5F_5$ -Br2: C, 21.70; H, 1.52; F, 28.62; Br, 48.15. Found: C, 21.74; H, 1.54; F, 28.52; Br, 48.07.

Reaction of 1-Pentafluorocyclopropyl Propene 1b with Bromine in the Presence of Pyridine. After a mixture of 3.2 g of bromine and 3.2 g of pyridine in 10 mL of $\mathrm{CH}_2\mathrm{Cl}_2$ was stirred at temperatures between -9 and 0 °C for 10 min, 2.4 g of c-C₃F₅- $CH=CHCH₃$ was added. The resulting mixture was stirred at 4 °C for 45 min and then at 9 °C for 1.5 h , diluted with 20 mL of CH_2Cl_2 , and washed with 5% HCl. After removal of the CH_2Cl_2 , 3.3 g of (*Z*)-BrCF₂CF₂CF=CHCH₂Br and c-C₃F₅CHBrCHBrCH₃ in a 3:1 ratio were obtained.

Reaction of Vinylpentafluorocyclopropane with Chlorine. A mixture of (Z) -ClCF₂CF₂CF=CHCH₂Cl and c-C₃F₅- $CHCICH₂Cl$ was obtained in a ratio of 5:1 in 65% yield, bp 112 to 115 °C. ¹⁹F NMR for (*Z*)-ClCF₂CF₂CF=CHCH₂Cl: δ -70.9 (m, 2F), -117.9 (m, 2F), -125.9 (m, 1F). ¹⁹F NMR for c-C₃F₅-CHClCH₂Cl: δ -146.1 (dd, $J = 196.4$ Hz, $J = 5.4$ Hz, 1F), -155.0 (dt, $J = 196.0$ Hz, $J = 5.4$ Hz, 1F), -155.6 (dd, $J = J =$ 201.6 Hz, $J = 8.3$ Hz, 1F), -156.8 (dt, $J = 201.3$ Hz, $J = 6.0$ Hz, 1F), -221.9 (dt, $J = 25.3$ Hz, $J = 6.2$ Hz, 1F). ¹H NMR for (*Z*)- $CICF_2CF=CHCH_2Cl: \delta$ 5.85 (dt, $J = 30.2$ Hz, $J = 7.9$ Hz, 1H), 4.21 (ddt, $J = 7.9$ Hz, $J = 1.6$ Hz, $J = 1.6$ Hz, 2H). ¹H NMR for c-C₃F₅CHClCH₂Cl: δ 3.88 (d, $J = 9.6$ Hz) and 3.86 (d, J 16.6 for c-C₃F₅CHClCH₂Cl: δ3.88 (d, J = 9.6 Hz) and 3.86 (d, J 16.6
Hz) total 2H, 3.95 (m, 1H). GC-HRMS: calcd for ClCF₂CF₂CF= CHCH2Cl, 227.9532; found, 227.9546. GC-HRMS: calcd for $c-C_3F_5CHClCH_2Cl - Cl: 192.9843$; found: 192.978.

Reaction of 1-Pentafluorocyclopropyl Propene 1b with Chlorine. (Z)-ClCF₂CF₂CF=CHCH₂Cl and c-C₃F₅CHClCHClCH₃ were obtained in a 3:1 ratio in 75% yield, bp 126 °C. 19F NMR for (Z) -ClCF₂CF₂CF=CHCHClCH₃: δ -70.9 (m, 2F), -118.0 (m, 2F), -126.8 (m, 1F). 19F NMR for c-C3F5CHClCHClCH3: *^δ* -145.9 (dd, $J = 196.4$ Hz, $J = 6.4$ Hz, 1F), -155.7 (dm, $J =$ 196.6 Hz, 2F), -157.3 (dt, $J = 201$ Hz, $J = 6.0$ Hz, 1F), -220.1 (dt, $J = 26.2$ Hz, $J = 5.5$ Hz, 1F). ¹H NMR for (Z) -ClCF₂CF₂-CF=CHCHClCH₃: *δ* 5.78 (dd, *J* = 30.7 Hz, *J* = 10.0 Hz, 1H), 4.96 (dq, *J* = 10.0 Hz, *J* = 0.7 Hz, 1H), 1.66 (d, *J* = 6.7 Hz, 3H). ¹H NMR for c-C₃F₅CHClCHClCH₃: *δ* 4.26 (dq, *J* = 10.1 Hz, *J* = 6.5 Hz, 1H), 4.06 (ddt, $J = 25.5$ Hz, $J = 10.1$ Hz, $J = 2.0$ Hz, 1H), 1.76 (d, $J = 6.5$ Hz, 3H). GC-HRMS: calcd for $C_6H_5F_5Cl_2$, 241.9868; found, 241.9866 for (*Z*)-ClCF₂CF₂CF=CHCHClCH₃ and 241.9977 for c-C₃F₅CHClCHClCH_{3.}

Reaction of Vinylpentafluorocyclopropane with Iodine Monochloride. A mixture of (Z) -ICF₂CF₂CF=CHCH₂Cl and c-C₃F₅CHICH₂Cl were obtained in a ratio of 2:1 in 92% yield, bp 85-91 °C/80 mmHg. ¹⁹F NMR for (*Z*)-ICF₂CF₂CF=CHCH₂-Cl: *^δ* -60.6 (m, 2F), -112.5 (m, 2F), -125.0 (m, 1F). 19F NMR for c-C₃F₅CHICH₂Cl: δ -145.0 (dd, *J* = 193.4 Hz, *J* = 6.6 Hz, 1F), -155.0 (dm, $J = 193.6$ Hz, 1F), -155.9 (dd, $J = 199.8$ Hz, *J* = 5.3 Hz, 1F), -156.9 (dt, *J* = 200 Hz, *J* = 5.3 Hz, 1F), -221.5 (dt, $J = 25.5$ Hz, $J = 5.8$ Hz, 1F). ¹H NMR for (Z) -ICF₂CF₂CF= CHCH₂Cl: δ 5.83 (dt, $J = 30.5$ Hz, $J = 8.0$ Hz, 1H), 4.19 (ddt, $J = 8.0$ Hz, $J = 2.0$ Hz, $J = 1.6$ Hz, 2H). ¹H NMR for c-C₃F₅-CHICH₂Cl: δ 4.40-4.24 (m, 1H), 5.95 (d, $J = 10.1$ Hz, 2H). GC-HRMS: calcd for C5H3F5ICl, 319.8890; found: 319.8848 for (*Z*)- $ICF₂CF₂CF=CHCH₂Cl$ and 319.8917 for c-C₃F₅CHICH₂Cl.

Reaction of 1-Pentafluorocyclopylpropene 1b with Iodine Monochloride. A mixture of $(Z$ -ICF₂CF₂CF=CHCHClCH₃ and c -C₃F₅CHICHClCH₃ was obtained in a 1:2.2 ratio in 89% yield, bp 83-84 °C/38 mmHg. ¹⁹F NMR for (Z) -ICF₂CF₂CF= CHCHClCH₃: δ -60.6 (m, 2F), -112.8 (dt, $J = 14.5$ Hz, $J = 7.7$ Hz, 2F), -126.2 (m, 1F). ¹H NMR for (*Z*)-ICF₂CF₂CF=CH-CHClCH₃: δ 5.76 (dd, $J = 30.8$ Hz, $J = 10.0$ Hz, 1H), 4.96 (dq, *J* = 9.9 Hz, *J* = 6.7 Hz, 1H), 1.66 (d, *J* = 6.7 Hz, 3H). ¹H NMR for c-C₃F₅CHICHClCH₃: δ -4.10 \sim -4.40 (m, 2H), 2.13 (d, J = 6.6 Hz), 1.83 (d, $J = 6.7$ Hz), 1.73 (d, $J = 6.8$ Hz) total 3H. Anal. Calcd for $C_6H_5F_5ICl$: C, 21.55; H, 1.51; I, 37.47; Cl, 10.60. Found: C, 21.68; H, 1.53; I, 37.47; Cl, 9.88.

Acknowledgment. I thank Mr. R. E. Smith, Jr., for technical assistance and Dr. M. Hofmann for his comments on the manuscript.

JO030112J